Wednesday, 20 September 2017

Variância média móvel simples


Explorando A Volatilidade Médica Mover Ponderada Exponencialmente é a medida mais comum de risco, mas vem em vários sabores. Em um artigo anterior, mostramos como calcular a volatilidade histórica simples. (Para ler este artigo, consulte Usando a volatilidade para avaliar o risco futuro.) Usamos os dados atuais do preço das ações da Googles para calcular a volatilidade diária com base em 30 dias de estoque de dados. Neste artigo, melhoraremos a volatilidade simples e discutiremos a média móvel ponderada exponencialmente (EWMA). Vs históricos. Volatilidade implícita Primeiro, colocamos essa métrica em um pouco de perspectiva. Existem duas abordagens amplas: volatilidade histórica e implícita (ou implícita). A abordagem histórica pressupõe que o passado é o prólogo que medimos a história na esperança de que seja preditivo. A volatilidade implícita, por outro lado, ignora o histórico que resolve para a volatilidade implícita nos preços de mercado. Espera que o mercado conheça melhor e que o preço de mercado contenha, mesmo que de forma implícita, uma estimativa consensual da volatilidade. (Para leitura relacionada, veja Os Usos e Limites da Volatilidade.) Se nos concentrarmos apenas nas três abordagens históricas (à esquerda acima), eles têm dois passos em comum: Calcule a série de retornos periódicos Aplicar um esquema de ponderação Primeiro, nós Calcule o retorno periódico. Isso geralmente é uma série de retornos diários, em que cada retorno é expresso em termos compostos continuamente. Para cada dia, tomamos o log natural da proporção dos preços das ações (ou seja, preço hoje dividido por preço ontem e assim por diante). Isso produz uma série de retornos diários, de u i to u i-m. Dependendo de quantos dias (m dias) estamos medindo. Isso nos leva ao segundo passo: é aqui que as três abordagens diferem. No artigo anterior (Usando o Volatility To Gauge Future Risk), mostramos que sob um par de simplificações aceitáveis, a variância simples é a média dos retornos quadrados: Observe que isso resume cada um dos retornos periódicos, então divide esse total pelo Número de dias ou observações (m). Então, é realmente apenas uma média dos retornos periódicos quadrados. Dito de outra forma, cada retorno quadrado recebe um peso igual. Então, se o alfa (a) é um fator de ponderação (especificamente, um 1m), então uma variância simples parece algo assim: O EWMA melhora a diferença simples. A fraqueza dessa abordagem é que todos os retornos ganham o mesmo peso. O retorno de Yesterdays (muito recente) não tem mais influência na variação do que o retorno dos últimos meses. Esse problema é corrigido usando a média móvel ponderada exponencialmente (EWMA), na qual os retornos mais recentes têm maior peso na variância. A média móvel ponderada exponencialmente (EWMA) apresenta lambda. Que é chamado de parâmetro de suavização. Lambda deve ser inferior a um. Sob essa condição, em vez de pesos iguais, cada retorno quadrado é ponderado por um multiplicador da seguinte forma: por exemplo, RiskMetrics TM, uma empresa de gerenciamento de risco financeiro, tende a usar uma lambda de 0,94 ou 94. Neste caso, o primeiro ( Mais recente) o retorno periódico ao quadrado é ponderado por (1-0,94) (94) 0 6. O próximo retorno ao quadrado é simplesmente um múltiplo lambda do peso anterior neste caso 6 multiplicado por 94 5,64. E o peso do terceiro dia anterior é igual (1-0,94) (0,94) 2 5,30. Esse é o significado de exponencial em EWMA: cada peso é um multiplicador constante (isto é, lambda, que deve ser inferior a um) do peso dos dias anteriores. Isso garante uma variação ponderada ou tendenciosa em relação a dados mais recentes. (Para saber mais, confira a Planilha do Excel para a Volatilidade dos Googles.) A diferença entre a simples volatilidade e o EWMA para o Google é mostrada abaixo. A volatilidade simples efetivamente pesa cada retorno periódico em 0.196 como mostrado na Coluna O (tivemos dois anos de dados diários sobre o preço das ações. Isso é 509 devoluções diárias e 1509 0.196). Mas observe que a coluna P atribui um peso de 6, então 5.64, depois 5.3 e assim por diante. Essa é a única diferença entre variância simples e EWMA. Lembre-se: depois de somar toda a série (na coluna Q), temos a variância, que é o quadrado do desvio padrão. Se queremos volatilidade, precisamos lembrar de tomar a raiz quadrada dessa variância. Qual é a diferença na volatilidade diária entre a variância e EWMA no caso do Googles. É significativo: a variância simples nos deu uma volatilidade diária de 2,4, mas a EWMA deu uma volatilidade diária de apenas 1,4 (veja a planilha para obter detalhes). Aparentemente, a volatilidade de Googles estabeleceu-se mais recentemente, portanto, uma variação simples pode ser artificialmente alta. A diferença de hoje é uma função da diferença de dias de Pior. Você notará que precisamos calcular uma série longa de pesos exponencialmente decrescentes. Nós não vamos fazer a matemática aqui, mas uma das melhores características do EWMA é que toda a série se reduz convenientemente a uma fórmula recursiva: Recursiva significa que as referências de variância de hoje (ou seja, são uma função da variância dos dias anteriores). Você também pode encontrar esta fórmula na planilha e produz exatamente o mesmo resultado que o cálculo de longo prazo. A variação de hoje (sob EWMA) é igual a variância de ontem (ponderada por lambda) mais retorno quadrado de ontem (pesado por menos a lambda). Observe como estamos apenas adicionando dois termos em conjunto: variância ponderada de ontem e atraso de ontem, retorno quadrado. Mesmo assim, lambda é o nosso parâmetro de suavização. Um lambda mais alto (por exemplo, como RiskMetrics 94) indica decadência mais lenta na série - em termos relativos, teremos mais pontos de dados na série e eles vão cair mais devagar. Por outro lado, se reduzirmos a lambda, indicamos maior deterioração: os pesos caem mais rapidamente e, como resultado direto da rápida deterioração, são usados ​​menos pontos de dados. (Na planilha, lambda é uma entrada, para que você possa experimentar sua sensibilidade). Resumo A volatilidade é o desvio padrão instantâneo de um estoque e a métrica de risco mais comum. É também a raiz quadrada da variância. Podemos medir a variação historicamente ou implicitamente (volatilidade implícita). Ao medir historicamente, o método mais fácil é a variância simples. Mas a fraqueza com variância simples é que todos os retornos recebem o mesmo peso. Então, enfrentamos um trade-off clássico: sempre queremos mais dados, mas quanto mais dados temos, mais nosso cálculo será diluído por dados distantes (menos relevantes). A média móvel ponderada exponencialmente (EWMA) melhora a variação simples ao atribuir pesos aos retornos periódicos. Ao fazer isso, podemos usar um grande tamanho de amostra, mas também dar maior peso aos retornos mais recentes. (Para ver um tutorial de filme sobre este tópico, visite a Tartaruga Bionica.) O VaR Value at Risk da carteira é uma medida da pior perda de casos que pode ocorrer durante um período de retenção especificado para uma determinada probabilidade. É uma medida amplamente utilizada para avaliar o risco de mercado inerente a um determinado investimento ou carteira de investimentos. O exemplo VaR EXCEL da carteira é uma folha de cálculo detalhada que demonstra o cálculo do VaR para uma carteira de seis instrumentos compostos por 3 contratos de câmbio (EUR, AUD e JPY) e três commodities (WTI, Gold e Silver). Antes de calcular o VaR para o portfólio, a métrica é calculada para cada instrumento dentro do portfólio usando a Abordagem de Covariância de Variância de Mudança de Movimento Simples e a Abordagem de Simulação Histórica. Ele mostra como um gráfico de Volatilidades de trânsito é construído e o cálculo de uma estimativa bruta do número de VaR usando a volatilidade máxima dessa série de volatilidade de rastreamento. O método de simulação histórica também é ilustrado usando a ferramenta de análise de dados EXCEL para histogramas, aplicada na série de retorno diário, para cada uma das moedas, bem como para o portfólio. A derivação do VaR da Carteira para Abordagem de Covariância de Variância é feita usando o método tradicional da matriz de variância e covariância, bem como usando um corte curto calculando uma série de retorno média ponderada para o portfólio. A funcionalidade da tabela de dados do EXCEL é usada para calcular o VaR de retenção de 10 dias para probabilidades variáveis ​​(conforme dado pelo nível de confiança usado). Confira nossa loja de cursos de finanças para obter mais cursos sobre o conceito Value at Risk. Em particular: Publicações relacionadas: Sobre o autor Jawwad Farid Jawwad Farid tem vindo a construir e implementar modelos de risco e sistemas de back office desde agosto de 1998. Trabalhando com clientes em quatro continentes, ele ajuda os banqueiros, membros do conselho e reguladores a adotar uma abordagem relevante para o mercado de gerenciamento de riscos . Ele é o autor de Models at Work e Option Greeks Primer, ambos publicados pela Palgrave Macmillan. Jawwad é uma Fellow Society of Actuaries, (FSA, Schaumburg, IL), possui MBA da Columbia Business School e é graduado em ciência da computação de (NUCES RÁPIDO). Ele é um membro do corpo docente adjunto da SP Jain Global School of Management em Dubai e Cingapura, onde ensina Gestão de Riscos, Preços Derivativos e Empreendedorismo. Um pensamento sobre ldquoPortfolio VaRrdquo Os comentários estão fechados. Médias móveis Médias móveis Com conjuntos de dados convencionais, o valor médio é geralmente o primeiro e uma das estatísticas de resumo mais úteis para calcular. Quando os dados estão na forma de uma série temporal, a série significa uma medida útil, mas não reflete a natureza dinâmica dos dados. Os valores médios calculados em períodos curtos, quer antes do período atual, quer centrados no período atual, são geralmente mais úteis. Uma vez que esses valores médios variam, ou se movem, à medida que o período atual se move do tempo t 2, t 3. etc., eles são conhecidos como médias móveis (Mas). Uma média móvel simples é (tipicamente) a média não ponderada de k valores anteriores. Uma média móvel ponderada exponencialmente é essencialmente a mesma que uma média móvel simples, mas com contribuições para a média ponderada pela proximidade com a hora atual. Como não há um, mas toda uma série de médias móveis para qualquer série, o conjunto de Mas pode ser plotado em gráficos, analisados ​​como uma série e usados ​​em modelagem e previsão. Uma série de modelos pode ser construída usando médias móveis, e estas são conhecidas como modelos MA. Se esses modelos forem combinados com modelos autorregressivos (AR), os modelos compostos resultantes são conhecidos como modelos ARMA ou ARIMA (o I é para integrado). Médias móveis simples Uma vez que uma série temporal pode ser considerada como um conjunto de valores, t 1,2,3,4, n a média desses valores pode ser calculada. Se assumirmos que n é bastante grande, e selecionamos um inteiro k, que é muito menor que n. Podemos calcular um conjunto de médias de bloco, ou médias móveis simples (da ordem k): cada medida representa a média dos valores de dados ao longo de um intervalo de observações k. Observe que o primeiro MA possível da ordem k gt0 é aquele para t k. Mais geralmente podemos soltar o subíndice extra nas expressões acima e escrever: Isto indica que a média estimada no tempo t é a média simples do valor observado no tempo t e as etapas de tempo precedentes de k-1. Se forem aplicados pesos que diminuam a contribuição das observações que estão mais longe no tempo, a média móvel é dita suavizada exponencialmente. As médias móveis são freqüentemente usadas como forma de previsão, pelo que o valor estimado para uma série no instante t 1, S t1. É tomado como MA durante o período até e inclusive o tempo t. por exemplo. A estimativa de hoje é baseada em uma média de valores registrados anteriores até e inclusive ontem (para dados diários). As médias móveis simples podem ser vistas como uma forma de suavização. No exemplo ilustrado abaixo, o conjunto de dados de poluição do ar mostrado na introdução deste tópico foi aumentado por uma linha de média móvel de 7 dias (MA), mostrada aqui em vermelho. Como pode ser visto, a linha MA suaviza os picos e as depressões nos dados e pode ser muito útil na identificação de tendências. A fórmula padrão de cálculo direto significa que os primeiros pontos de dados k -1 não possuem valor MA, mas, posteriormente, os cálculos se estendem ao ponto final de dados da série. PM10 valores médios diários, fonte de Greenwich: London Air Quality Network, londonair. org. uk Um dos motivos para o cálculo de médias móveis simples da maneira descrita é que permite que os valores sejam computados para todos os intervalos de tempo do tempo até o presente, e Como uma nova medida é obtida para o tempo t 1, o MA para o tempo t 1 pode ser adicionado ao conjunto já calculado. Isso fornece um procedimento simples para conjuntos de dados dinâmicos. No entanto, existem algumas questões com essa abordagem. É razoável argumentar que o valor médio nos últimos 3 períodos, por exemplo, deve estar localizado no tempo t -1, e não no tempo t. E para um MA em um número par de períodos, talvez ele deve estar localizado no meio do ponto entre dois intervalos de tempo. Uma solução para esta questão é usar cálculos de MA centrados, em que o MA no tempo t é a média de um conjunto simétrico de valores em torno de t. Apesar de seus méritos óbvios, essa abordagem não é geralmente usada porque requer que os dados estejam disponíveis para eventos futuros, o que pode não ser o caso. Nos casos em que a análise é inteiramente de uma série existente, o uso de Mas centrado pode ser preferível. As médias móveis simples podem ser consideradas como uma forma de suavização, eliminando alguns componentes de alta freqüência de uma série de tempo e destacando (mas não removendo) tendências de maneira similar à noção geral de filtragem digital. De fato, as médias móveis são uma forma de filtro linear. É possível aplicar uma computação média móvel a uma série que já foi suavizada, ou seja, suavizando ou filtrando uma série já suavizada. Por exemplo, com uma média móvel da ordem 2, podemos considerá-la como sendo calculada usando pesos, de modo que o MA em x 2 0,5 x 1 0,5 x 2. Do mesmo modo, o MA em x 3 0,5 x 2 0,5 x 3. Se nós Aplicar um segundo nível de suavização ou filtragem, temos 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3, isto é, a filtragem de 2 estágios O processo (ou convolução) produziu uma média móvel simétrica ponderada de forma variável, com pesos. Várias convoluções podem produzir médias móveis bastante ponderadas, algumas das quais foram encontradas de particular uso em campos especializados, como nos cálculos do seguro de vida. As médias móveis podem ser usadas para remover efeitos periódicos se computado com o comprimento da periodicidade como conhecido. Por exemplo, com os dados mensais, as variações sazonais podem ser muitas vezes removidas (se este for o objetivo) aplicando uma média móvel simétrica de 12 meses com todos os meses ponderados igualmente, exceto o primeiro e o último que são ponderados por 12. Isso ocorre porque haverá Tenha 13 meses no modelo simétrico (tempo atual, t. - 6 meses). O total é dividido por 12. Procedimentos semelhantes podem ser adotados para qualquer periodicidade bem definida. Médias móveis ponderadas exponencialmente (EWMA) Com a fórmula média móvel simples: todas as observações são igualmente ponderadas. Se chamássemos esses pesos iguais, alfa t. Cada um dos pesos k seria igual a 1 k. Então a soma dos pesos seria de 1, e a fórmula seria: já vimos que as múltiplas aplicações desse processo resultam na variação dos pesos. Com médias móveis exponencialmente ponderadas, a contribuição para o valor médio de observações mais removidas no tempo é deliberada reduzida, enfatizando eventos mais recentes (locais). Essencialmente, um parâmetro de suavização, 0lt alfa lt1, é introduzido e a fórmula revisada para: Uma versão simétrica desta fórmula seria da forma: se os pesos no modelo simétrico forem selecionados como os termos dos termos da expansão binomial, (1212) 2q. Eles somarão para 1, e como q se tornar grande, irá se aproximar da distribuição Normal. Esta é uma forma de ponderação do kernel, com o Binomial atuando como a função kernel. A convolução de dois estágios descrita na subseção anterior é precisamente esse arranjo, com q 1, produzindo os pesos. Em suavização exponencial, é necessário usar um conjunto de pesos que somem para 1 e que reduzem de tamanho geométricamente. Os pesos utilizados são tipicamente da forma: Para mostrar que esses pesos somam para 1, considere a expansão de 1 como uma série. Podemos escrever e expandir a expressão entre parênteses usando a fórmula binomial (1- x) p. Onde x (1-) e p -1, o que dá: Isto fornece uma forma de média móvel ponderada da forma: esta soma pode ser escrita como uma relação de recorrência: o que simplifica bastante a computação e evita o problema de que o regime de ponderação Deve ser estritamente infinito para os pesos somarem para 1 (para valores pequenos de alfa. Isso geralmente não é o caso). A notação utilizada por diferentes autores varia. Alguns usam a letra S para indicar que a fórmula é essencialmente uma variável suavizada e escreve: enquanto a literatura da teoria do controle geralmente usa Z em vez de S para os valores exponencialmente ponderados ou suavizados (veja, por exemplo, Lucas e Saccucci, 1990, LUC1 , E o site NIST para mais detalhes e exemplos trabalhados). As fórmulas citadas acima derivam do trabalho de Roberts (1959, ROB1), mas Hunter (1986, HUN1) usa uma expressão da forma: que pode ser mais apropriada para uso em alguns procedimentos de controle. Com o alfa 1, a estimativa média é simplesmente seu valor medido (ou o valor do item de dados anterior). Com 0,5, a estimativa é a média móvel simples das medições atuais e anteriores. Em modelos de previsão o valor, S t. É freqüentemente usado como estimativa ou valor de previsão para o próximo período de tempo, ou seja, como a estimativa para x no tempo t 1. Assim, temos: Isso mostra que o valor de previsão no tempo t 1 é uma combinação da média móvel ponderada exponencialmente anterior Mais um componente que representa o erro de previsão ponderado, epsilon. No tempo t. Assumindo que uma série de tempo é fornecida e uma previsão é necessária, é necessário um valor para alfa. Isso pode ser estimado a partir dos dados existentes, avaliando a soma dos erros de predição quadrados, obtendo com valores variáveis ​​de alfa para cada t 2,3. Definindo a primeira estimativa para ser o primeiro valor de dados observado, x 1. Nas aplicações de controle, o valor de alfa é importante, isto é, é usado na determinação dos limites de controle superior e inferior e afeta o comprimento de execução médio (ARL) esperado Antes que esses limites de controle sejam quebrados (sob o pressuposto de que a série temporal representa um conjunto de variáveis ​​independentes aleatoriamente, distribuídas de forma idêntica com variância comum). Nessas circunstâncias, a variância da estatística de controle: é (Lucas e Saccucci, 1990): os limites de controle geralmente são estabelecidos como múltiplos fixos dessa variância assintótica, p. - 3 vezes o desvio padrão. Se alfa 0.25, por exemplo, e os dados que estão sendo monitorados assumem ter uma distribuição Normal, N (0,1), quando no controle, os limites de controle serão - 1.134 e o processo atingirá um ou outro limite em 500 etapas na média. Lucas e Saccucci (1990 LUC1) derivam os ARLs para uma ampla gama de valores alfa e sob vários pressupostos usando os procedimentos da Cadeia de Markov. Eles tabulam os resultados, incluindo o fornecimento de ARL quando a média do processo de controle foi deslocada por algum múltiplo do desvio padrão. Por exemplo, com uma mudança de 0,5 com alfa 0.25, o ARL tem menos de 50 etapas de tempo. As abordagens descritas acima são conhecidas como suavização exponencial única. Uma vez que os procedimentos são aplicados uma vez às séries temporais e, em seguida, os processos de análise ou controle são realizados no conjunto de dados suavizado resultante. Se o conjunto de dados incluir uma tendência e / ou componentes sazonais, o alisamento exponencial de dois ou três estágios pode ser aplicado como meio de remoção (modelagem explícita) desses efeitos (veja ainda mais a seção sobre Previsão abaixo e o exemplo NIST). CHA1 Chatfield C (1975) The Analysis of Times Series: Teoria e Prática. Chapman and Hall, London HUN1 Hunter J S (1986) A média móvel ponderada exponencialmente. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Esquemas de Controle Médio Médio Ponderado Exponencialmente: Propriedades e Melhorias. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Testes de tabela de controle com base em médias móveis geométricas. Technometrics, 1, 239-250

No comments:

Post a comment